Search results

Search for "mesenchymal stem cells" in Full Text gives 37 result(s) in Beilstein Journal of Nanotechnology.

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • 21 days and inhibited the growth of Staphylococcus aureus and Escherichia coli bacteria. Human bone marrow mesenchymal stem cells were well attached and proliferated on the surface of the LAP/AMX functionalized PLA scaffolds, which provided a bacteria-free environment for bone differentiation in the
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • , voltage (mV), and temperature (°C). The precision of the pH measurement was 10−2. MTT assay The MTT assay was performed on mesenchymal stem cells (MSCs) previously isolated from six-months-old Wistar rat bone marrow, cultured in HiMesoXL™ mesenchymal stem cell expansion medium (HiMedia, India) and stored
  • at −80 °C in FBS (Lonza, Belgium) with 10% DMSO (Alchimia, Italy). The ethical approval, as well as the protocol used for the isolation of the mesenchymal stem cells is described in the Annex. After thawing, cells from the third passage were cultured in DMEM/Ham F12 (Sigma, Germany) cell culture
  • (solubility and biomineralization) and biocompatibility (98.5% of cell viability). Annex Ethical approval and the protocol used for the isolation of the mesenchymal stem cells The mesenchymal stem cells (MSC) for the MTT test were isolated from the bone marrow of six-months-old Wistar rats at the Laboratory
PDF
Full Research Paper
Published 12 Dec 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • , osteoblasts generate a membrane that includes alkaline phosphatase, which cleaves phosphatase groups and causes calcium and phosphate precipitation, resulting in the formation of natural bone minerals with a ratio of 1.67 [27]. Osteoblasts have been predominantly derived from mesenchymal stem cells, which
  • vitro cell interaction with mesenchymal stem cells through the p38 MAPK signalling pathway [17]. Gold nanoparticles show promising results in bone marrow mesenchymal stem cell differentiation towards osteogenic lineages, which might be due to the size and intrinsic factors of AuNPs. Mahmoud et al. (2020
  • ) have carried out a study on bone regeneration efficiency by using the AuNPs, hydroxyapatite nanoparticles, chitosan nanoparticles, gold hydroxyapatite-based nanocomposites, and chitosan–hydroxyapatite-based nanocomposites. In vitro cell interaction with bone-marrow-derived mesenchymal stem cells was
PDF
Review
Published 29 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • , endothelial, and human mesenchymal stem cells). It could be shown that all RGD peptides enhanced the adhesiveness of these spider silk surfaces, but the disulfide-bridged, fibronectin-derived integrin-binding RGD peptide showed the highest impact on cell adhesion [151]. RGD-modified FN-4Rep-CT silk could also
PDF
Album
Review
Published 08 Sep 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • differentiation [22]. Using this method, they observed enhanced chondrogenic differentiation of human mesenchymal stem cells (hMSCs) aggregated in micromass culture systems including microspheres. The use of a microsphere delivery system for controlled release obviates the need for the intermittent addition of
PDF
Album
Review
Published 11 Apr 2022

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • storage modulus (G') value of about 2000 Pa, and can be used for imaging three-dimensional cytoskeletal materials. After human mesenchymal stem cells (hMSCs) were cultured for 72 h in the 3D fiber hydrogel, the cell viability in the 3D gel was subsequently verified. Only a few dead cells were observed
PDF
Album
Review
Published 12 Oct 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • . demonstrated enhanced proliferation and chondrogenic differentiation of human mesenchymal stem cells by applying lipid-coated MBs plus low-intensity pulsed US. After treatment, cell proliferation was increased by 40%, and the production of glycosaminoglycan and type II collagen was increased by 17% and 78
PDF
Album
Review
Published 11 Aug 2021

Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension

  • Khosro Adibkia,
  • Ali Ehsani,
  • Asma Jodaei,
  • Ezzatollah Fathi,
  • Raheleh Farahzadi and
  • Mohammad Barzegar-Jalali

Beilstein J. Nanotechnol. 2021, 12, 786–797, doi:10.3762/bjnano.12.62

Graphical Abstract
  • possible combination of stem cells and nanotechnology in the treatment of diseases. This study aims to investigate the in vitro effect of silver nanoparticles (Ag-NPs) on the cardiomyogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) through detection of cardiac markers. For
  • recently gained much attention in cell therapy regarding the repair of damaged heart tissue [3]. In regenerative medicine, bone marrow mesenchymal stem cells (BM-MSCs) and cardiac progenitor cells play a remarkable role in the regeneration of the myocardium [4]. Experimental studies related to the role of
PDF
Album
Full Research Paper
Published 02 Aug 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • condition characterized by pigmentary changes secondary to exposure to silver salts which accumulate in the skin and mucous membranes. The toxicity of AgNPs is closely related to the release of Ag+ [57]. Studies with human mesenchymal stem cells (hMSCs) treated, under cell culture conditions, with different
PDF
Album
Supp Info
Review
Published 14 May 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
PDF
Album
Review
Published 29 Apr 2021

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • iron metabolism to complete. They found that mesenchymal stem cells needed a sodium acetate buffer with pH 4.5 to completely reduce the iron, which took them less than seven days. At pH 5.5, they obtained a measurable iron release after 48 h. To prevent the lysosomal degradation of SPIONs, Wu et al
PDF
Album
Review
Published 27 Jul 2020

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2019

Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter

  • Alexander Rostek,
  • Marina Breisch,
  • Kevin Pappert,
  • Kateryna Loza,
  • Marc Heggen,
  • Manfred Köller,
  • Christina Sengstock and
  • Matthias Epple

Beilstein J. Nanotechnol. 2018, 9, 2763–2774, doi:10.3762/bjnano.9.258

Graphical Abstract
  • determine the effect of particle exposure on the viability of human mesenchymal stem cells (hMSCs). Except for silver, no adverse effect of any of the metal nanoparticles was observed for concentrations up to 50 ppm (50 mg L−1) incubated for 24 h, indicating that noble metal nanoparticles (rhodium
  • , Pd, Ag, Pt and Au that are of the same size and have the same surface functionalization (PVP) to compare their biological effect on a well-established system, i.e., on human mesenchymal stem cells (hMSC). Materials and Methods Chemicals Poly(N-vinyl pyrrolidone) (PVP K 30, Povidon 30; Fluka, M
  • with a sample volume of 750 µL were used. High-resolution imaging was performed using an aberration-corrected FEI Titan transmission electron microscope (TEM) equipped with a Cs-probe corrector (CEOS Company) and operating at 300 kV [53]. Cell biology Human mesenchymal stem cells (hMSC, 5th to 10th
PDF
Album
Full Research Paper
Published 29 Oct 2018

Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells

  • Zdeněk Plichta,
  • Yulia Kozak,
  • Rostyslav Panchuk,
  • Viktoria Sokolova,
  • Matthias Epple,
  • Lesya Kobylinska,
  • Pavla Jendelová and
  • Daniel Horák

Beilstein J. Nanotechnol. 2018, 9, 2533–2545, doi:10.3762/bjnano.9.236

Graphical Abstract
  • undifferentiated cells, mesenchymal stem cells were utilized. Cellular uptake of agents was studied by fluorescence microscopy and induction of cell death was visualized by live/dead assay. Dox-conjugated γ-Fe2O3@P(HPMA-MMAA) particles showed enhanced cytotoxicity in drug-sensitive and drug-resistant tumor cells
  • -Fe2O3@P(HPMA-MMAA)-Dox nanoparticles (Dox+NP) towards human mesenchymal stem cells (hMSC, seeded 5∙104 per mL), MTT assay. Data are relative to the untreated controls and represent the mean +/− SD of three independent experiments. *p < 0.05 relative to Dox, ** p < 0.01 relative to Dox, unpaired t-test
  • Mouse melanoma cells of B16F10/wt line, human T-leukemia cells of Jurkat, K562, HL-60 lines and its drug-resistant HL-60/vinc sub-line (overexpression of P-glycoprotein) were a kind gift of Prof. Walter Berger, Institute of Cancer Research, Vienna Medical University (Austria). Human mesenchymal stem
PDF
Album
Full Research Paper
Published 25 Sep 2018

Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants

  • Aikaterini-Rafailia Tsiapla,
  • Varvara Karagkiozaki,
  • Veroniki Bakola,
  • Foteini Pappa,
  • Panagiota Gkertsiou,
  • Eleni Pavlidou and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2018, 9, 1986–1994, doi:10.3762/bjnano.9.189

Graphical Abstract
  • this nanoplatform cytocompatible. In future studies, the interaction with musculoskeletal tissues will be examined with other cell lines such as mesenchymal stem cells (MSCs) or bone marrow stromal cells (BMSC) in order to evaluate the tissue specific response to our scaffolds. This cytocompatible
PDF
Album
Full Research Paper
Published 13 Jul 2018

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

  • Liga Saulite,
  • Karlis Pleiko,
  • Ineta Popena,
  • Dominyka Dapkute,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2018, 9, 321–332, doi:10.3762/bjnano.9.32

Graphical Abstract
  • , Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania, Laser Research Centre, Vilnius University, Sauletekio al. 9, corp. 3, LT-10222 Vilnius, Lithuania 10.3762/bjnano.9.32 Abstract We created a 3D cell co-culture model by combining nanoengineered mesenchymal stem cells (MSCs) with the
  • ; mesenchymal stem cells; quantum dots; spheroids; 3D cell culture; Introduction The recent progress in the development of nanoscale agents opens up new perspectives for targeted drug delivery in cancer diagnostics, imaging and therapy. However, once administered into the body, nanoparticles (NPs) are rapidly
  • and their immune privileged nature, mesenchymal stem cells (MSCs) can be used as a delivery vehicle for therapeutic and imaging agents, such as drug-conjugated NPs [3][4]. MSCs are adult stem cells that can be isolated from various organs, including brain, liver, kidney, lung, bone marrow, muscle
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2018

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • ) [40]. Locally ordered collagen type-I gels, obtained by solvent evaporation, could induce an aligned 2D growth of human mesenchymal stem cells as well as their guided differentiation into bone tissues within two weeks in osteogenic media [86]. The concentrated (ca. 90 mg/mL) collagen type-I film
  • local alignments, which resulted in directed and oriented growth of human mesenchymal stem cells and their osteogenic differentiation [105]. Additionally, biomineralization-mimicking hybrid materials, using chitin nanowhisker gel matrices in a nematic phase as templates for CaCO3 crystallization, have
  • peptide amphiphiles can be made to encapsulate living cells in an anisotropic monodomain gel [36]. The gel self-assembly is induced by cooling within a physiological temperature range via nozzle-protrusion into the salty buffer. During the process, human mesenchymal stem cells and HL-1 cardiomyocytes were
PDF
Album
Review
Published 18 Jan 2018

Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents

  • Dovile Baziulyte-Paulaviciene,
  • Vitalijus Karabanovas,
  • Marius Stasys,
  • Greta Jarockyte,
  • Vilius Poderys,
  • Simas Sakirzanovas and
  • Ricardas Rotomskis

Beilstein J. Nanotechnol. 2017, 8, 1815–1824, doi:10.3762/bjnano.8.183

Graphical Abstract
  • behavior in biological systems and biocompatibility/nanotoxicity is still limited. The study of Cascales et al. showed that ultrasmall Yb:Er:NaGd(WO4)2 UCNPs could be successfully covered with Tween 80 and are internalized by human mesenchymal stem cells without triggering their metabolic activity, but
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2017

Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery

  • Liga Saulite,
  • Dominyka Dapkute,
  • Karlis Pleiko,
  • Ineta Popena,
  • Simona Steponkiene,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2017, 8, 1218–1230, doi:10.3762/bjnano.8.123

Graphical Abstract
  • nanoparticles in imaging and targeted therapy of tumours. Due to their tumour-homing ability, nano-engineered mesenchymal stem cells (MSCs) could be utilized as vectors to deliver diagnostic and therapeutic nanoparticles into a tumour. In the present study, uptake and functional effects of carboxyl-coated
  • suggest that QD-labelled MSCs could be used for targeted drug delivery studies. Keywords: endocytosis; mesenchymal stem cells; quantum dots; stem cell differentiation; Introduction Despite remarkable advances in targeted therapies of various human malignancies, cancer is one of the leading causes of
  • drug carriers [3]. Recent studies have shown that nano-engineered mesenchymal stem cells (MSCs) could be used as tumour-targeted therapeutic carriers, reflecting their tumour-homing capabilities [4][5][6]. MSCs are present in many tissues of the human body, including bone marrow, adipose tissues, skin
PDF
Album
Full Research Paper
Published 07 Jun 2017

Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles

  • Olga Rotan,
  • Katharina N. Severin,
  • Simon Pöpsel,
  • Alexander Peetsch,
  • Melisa Merdanovic,
  • Michael Ehrmann and
  • Matthias Epple

Beilstein J. Nanotechnol. 2017, 8, 381–393, doi:10.3762/bjnano.8.40

Graphical Abstract
  • humidified atmosphere and cultivated according to standard cell culture protocols. A primary cell culture of human mesenchymal stem cells (hMSCs) was cultivated using mesenchymal stem cell (MSC) growth medium, supplemented according to the standard cultivation protocol. Approximately 12 h prior to the
PDF
Album
Full Research Paper
Published 07 Feb 2017

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • : ATP depletion; calcium crystallization; cytotoxicity; endocytosis; HeLa cells; LDH; mesenchymal stem cells; morphology; necrosis; particle size; silica nanoparticles; TEM; Introduction Silicon dioxide nanoparticles (SiNPs) are used in a wide range of commercially available products to improve product
  • limited to HeLa cells only or if this is a universal mechanism with which a cell and its membrane will react upon treatment with small silica NPs. Accordingly, we tested another 4 cell lines for the uptake morphologies: primary human mesenchymal stem cells (hMSC), human bone osteosarcoma cells (U2OS
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • ligand was coupled with a lipid chain, which was expected to enhance adsorption on the surface of the nanotube. The heptadentate DTPA ligand (L1), in turn, secured permanent coordination of Gd3+ in the new hybrid Gd-L1/MWCNT#Richard. Vittorio non-covalently combined pristine MWCNT with mesenchymal stem
  • cells (MSCs) [22]. MSCs labeled with MWCNT hybrids (MSC/Pol/MWCNT#Vittorio) were obtained by mixing Pluronic® F127 dispersion of MWCNTs (Pol/MWCNT#Vittorio) with incubated MSCs. One-month stability of the resulting dispersion was proven and a permanent binding of MWCNTs to the cells was observed in in
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles

  • Igor M. Pongrac,
  • Marina Dobrivojević,
  • Lada Brkić Ahmed,
  • Michal Babič,
  • Miroslav Šlouf,
  • Daniel Horák and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 926–936, doi:10.3762/bjnano.7.84

Graphical Abstract
  • , since it is highly biocompatible, easy to use, available on the market and promotes internalization with highly efficiency, e.g., into human mesenchymal stem cells [18][19]. As a positively charged polypeptide, PLL is used for nonspecific adhesion of cells to solid substrates through enhancing
  • previous results, in which a higher particle uptake by mesenchymal stem cells in contrast to lower uptake of Endorem commercial dextran-coated nanoparticles was revealed [19]. The optimal molecular weight of PLL was necessary for obtained labeling efficiency and biocompatibility [19][21]. The optimal
PDF
Album
Full Research Paper
Published 27 Jun 2016

Nanostructured surfaces by supramolecular self-assembly of linear oligosilsesquioxanes with biocompatible side groups

  • Maria Nowacka,
  • Anna Kowalewska and
  • Tomasz Makowski

Beilstein J. Nanotechnol. 2015, 6, 2377–2387, doi:10.3762/bjnano.6.244

Graphical Abstract
  • underlying matrix. For example, surfaces carrying COOH groups were applied for studies on the effect of surface wettability on protein adsorption and adhesion of human umbilical vein endothelial cells (HUVECs) and HeLa cells [3], human fibroblasts [14], human mesenchymal stem cells [15][22], corneal
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2015

Synthesis, characterization and in vitro effects of 7 nm alloyed silver–gold nanoparticles

  • Simon Ristig,
  • Svitlana Chernousova,
  • Wolfgang Meyer-Zaika and
  • Matthias Epple

Beilstein J. Nanotechnol. 2015, 6, 1212–1220, doi:10.3762/bjnano.6.124

Graphical Abstract
  • ) showed spherical, monodisperse, colloidally stable silver–gold nanoparticles of ≈7 nm diameter with measured molar metal compositions very close to the theoretical values. The examination of the nanoparticle cytotoxicity towards HeLa cells and human mesenchymal stem cells (hMSCs) showed that the toxicity
  • can be verified. Cell culture experiments To examine the cytotoxicity with regards to the molar fraction of silver in the nanoparticles, HeLa cells and human mesenchymal stem cells were incubated with nanoalloys of nine different compositions and also with pure gold and pure silver nanoparticles. In
  • cells) and human mesenchymal stem cells (hMSCs) were used for cell experiments. The HeLa cells were cultured in DMEM (Dulbecco's Modified Eagle's Medium), supplemented with 10% of fetal bovine serum (FBS), 100 U mL−1 penicillin, and 100 U mL−1 streptomycin. The hMSCs were cultivated in RPMI 1640
PDF
Album
Full Research Paper
Published 27 May 2015
Other Beilstein-Institut Open Science Activities